

These complete notes have been made for class 12th board computer science exam.

In Python, errors can occur due to various reasons:
• Syntax errors (violating Python's rules)
• Runtime errors (occurring during execution)
• Logical errors (wrong logic but no error message)

Among these, exceptions are runtime errors that disrupt normal program execution. Python allows handling these errors using
exception handling mechanisms, which prevent abrupt program termination.

Syntax Errors
A syntax error occurs when the Python interpreter detects incorrect syntax in the code. These errors must be fixed before running
the program.
Example:
print("Hello" # Missing closing parenthesis
Error Output:
SyntaxError: unexpected EOF while parsing
The interpreter detects a missing closing parenthesis and reports a SyntaxError.

Exceptions
Even if the syntax is correct, an error may occur during execution. These are called exceptions and include errors like:

• Division by zero
• Accessing an undefined variable
• Opening a non-existent file

Example:
num = 10 / 0 # Division by zero
Error Output:
ZeroDivisionError: division by zero
Since dividing by zero is undefined, Python raises a ZeroDivisionError.

Built-in Exceptions
Python provides several built-in exceptions to handle common errors. Some examples:

Exception Name Description
SyntaxError Raised for incorrect syntax
ZeroDivisionError Raised when dividing by zero
ValueError Raised when an operation receives an invalid argument
NameError Raised when a variable is not defined
IndexError Raised when accessing an out-of-range list index
TypeError Raised when an operation is performed on incompatible types

Example:
x = int("abc") # Invalid integer conversion
Error Output:
ValueError: invalid literal for int() with base 10: 'abc'

Raising Exceptions
Python allows raising exceptions manually using the raise keyword.
Example 1: Raising an Exception
x = -5
if x < 0:
 raise ValueError("Negative numbers are not allowed")
Output:
ValueError: Negative numbers are not allowed

The raise Statement
Syntax:
raise ExceptionType("Custom error message")

Raising IndexError
list1 = [1, 2, 3]
index = 5
if index >= len(list1):
 raise IndexError("Index out of range")
Output:
IndexError: Index out of range

The assert Statement
The assert statement checks a condition and raises an AssertionError if it fails.
x = -10

COMPLETE NOTES AND LECTURES BY SAMPAT LILER SIR

assert x >= 0, "Negative number detected"
Output:
AssertionError: Negative number detected

Handling Exceptions
Exception handling prevents program crashes by allowing us to catch and handle errors.
Need for Exception Handling
Without handling, an error stops the program execution. Exception handling:

• Prevents abrupt termination
• Allows alternative solutions
• Improves program reliability

Process of Exception Handling
When an exception occurs, Python:

1. Creates an exception object
2. Searches for an exception handler
3. If found, executes the handler; otherwise, the program stops.

Catching Exceptions
Python uses try...except to catch exceptions.
Syntax:
try:
 # Code that may raise an exception

except ExceptionType:
 # Code to handle the exception
Example: Handling ZeroDivisionError
try:
 x = int(input("Enter a number: "))
 result = 10 / x
 print("Result:", result)
except ZeroDivisionError:
 print("Cannot divide by zero!")
Output 1 (User enters 5):
Result: 2.0
Output 2 (User enters 0):
Cannot divide by zero!

Handling Multiple Exceptions
We can handle different errors using multiple except blocks.
try:
 num = int(input("Enter a number: "))
 result = 10 / num

except ZeroDivisionError:
 print("Cannot divide by zero!")
except ValueError:
 print("Invalid input! Please enter a number.")
Output 1 (User enters 0):
Cannot divide by zero!
Output 2 (User enters abc):
Invalid input! Please enter a number.

Catching All Exceptions
If we don’t know the type of exception, we can use except: without specifying an error.
try:
 x = int(input("Enter a number: "))
 result = 10 / x
except:
 print("An error occurred!")

Using try...except...else
The else block runs only if no exception occurs.
try:
 x = int(input("Enter a number: "))
 result = 10 / x
except ZeroDivisionError:
 print("Cannot divide by zero!")
except ValueError:
 print("Invalid input! Please enter a number.")
else:
 print("Division successful! Result:", result)
Output 1 (User enters 5):
Division successful! Result: 2.0

The finally Clause
The finally block always executes, whether an exception occurs or not.
Example:
try:
 x = int(input("Enter a number: "))
 result = 10 / x
except ZeroDivisionError:
 print("Cannot divide by zero!")
except ValueError:
 print("Invalid input! Please enter a number.")
finally:
 print("Execution complete!")

Output 1 (User enters 5):
Division successful! Result: 2.0
Execution complete!
Output 2 (User enters 0):
Cannot divide by zero!
Execution complete!

Summary

• Syntax errors occur due to incorrect syntax and must be fixed before execution.
• Exceptions occur during runtime and need to be handled.
• Built-in exceptions include ZeroDivisionError, ValueError, IndexError, etc.
• The raise statement manually raises exceptions.
• The assert statement checks conditions and raises AssertionError if false.
• Exception handling uses try...except to catch errors and prevent program crashes.
• The else block runs if no exception occurs.
• The finally block always executes, ensuring resource cleanup.

1. Introduction to Files
A file is a named location on a computer’s storage device where data is stored permanently. When we run a Python program, data exists
only during execution. If we want to store data permanently (like employee records, sales data, etc.), we need to use files.
In Python, files help in:

• Storing data permanently.
• Avoiding repetitive data entry.
• Managing large volumes of data efficiently.

Types of Files
There are two main types of files:

1. Text Files – Human-readable files containing characters (e.g., .txt, .csv, .py).
2. Binary Files – Machine-readable files containing 0s and 1s (e.g., images, videos, .exe files).

2. Opening and Closing a Text File
To work with files in Python, we use the open() function.
Opening a File
file_object = open("example.txt", "r") # Opens the file in read mode
Here, "r" is the mode which specifies how the file will be accessed.
Modes of Opening Files

Mode Description
"r" Read mode (default). File must exist.
"w" Write mode. Creates a new file or overwrites if exists.
"a" Append mode. Adds data at the end of the file.
"r+" Read & Write mode. File must exist.
"w+" Read & Write mode. Overwrites file if exists.
"a+" Append & Read mode. Creates file if not exists.

Closing a File
Once done, always close the file to free system resources.
file_object.close()
Using with Statement (Auto-close)
The with statement automatically closes the file after execution.
with open("example.txt", "r") as file:
 data = file.read() # Read file content

3. Writing to a Text File
To write data into a file, open it in write ("w") or append ("a") mode.
Using write() Method
Writes a string to the file.
file = open("example.txt", "w")
file.write("Hello, this is a test file!\n")
file.close()
Using writelines() Method
Writes multiple lines at once.
file = open("example.txt", "w")
lines = ["Hello!\n", "Python file handling is easy.\n"]
file.writelines(lines)
file.close()
⚠️ If opened in "w" mode, it overwrites existing content.

4. Reading from a Text File
To read data, open the file in read ("r") mode.
Using read() Method
Reads the entire file content.
file = open("example.txt", "r")
data = file.read()
print(data)
file.close()
Using readline() Method
Reads one line at a time.
file = open("example.txt", "r")
print(file.readline()) # Reads the first line
file.close()
Using readlines() Method
Reads all lines and returns a list.
file = open("example.txt", "r")
lines = file.readlines()
print(lines)
file.close()

COMPLETE NOTES AND LECTURES BY SAMPAT LILER SIR

5. Setting Offsets in a File (seek() and tell())
Sometimes, we may need to move within a file while reading or writing.
tell() Method
Returns the current position of the file pointer.
file = open("example.txt", "r")
print(file.tell()) # Shows position
seek() Method
Moves the file pointer to a specific byte position.
file = open("example.txt", "r")
file.seek(5) # Moves to the 5th byte
print(file.read()) # Reads from position 5
file.close()

6. Creating and Traversing a Text File
Creating a File and Writing Data
file = open("practice.txt", "w")
file.write("Python file handling example.\n")
file.write("Learning file operations.\n")
file.close()
Reading a File Line by Line
file = open("practice.txt", "r")
for line in file:
 print(line.strip()) # strip() removes newline characters
file.close()

7. The Pickle Module (Binary File Handling)
Python provides the pickle module for serializing (pickling) and deserializing (unpickling) Python objects into binary files.
Pickling (Saving Python Object to File)
import pickle

data = {"Name": "John", "Age": 25, "City": "New York"}
file = open("data.pkl", "wb") # Open in binary write mode
pickle.dump(data, file) # Dump data
file.close()
Unpickling (Loading Object from File)
file = open("data.pkl", "rb") # Open in binary read mode
loaded_data = pickle.load(file) # Load data
file.close()

print(loaded_data) # {'Name': 'John', 'Age': 25, 'City': 'New York'}

COMPLETE NOTES AND LECTURES BY SAMPAT LILER SIR

Summary
• Files allow permanent data storage.
• Text files store readable characters; binary files store data in bytes.
• Use open("filename", mode) to open a file.
• Use close() or with statement to close a file.
• Write data using write() and writelines().
• Read data using read(), readline(), and readlines().
• Move within a file using seek() and tell().
• Pickle module is used for storing and retrieving Python objects.

 Subscribe Youtube Channel - Anvira Education - YouTube

 Join Course - Https://Anviraeducation.Com/

 Follow Us On Facebook - Https://Www.Facebook.Com/Anviraedu

 Follow Us On Instagram - https://www.instagram.com/anvira_edu/

 Sampat Sir Instagram - https://www.instagram.com/writersampat/

 Join Our Telegram Channel - https://t.me/Anviraeducation20

https://www.youtube.com/@AnviraEducation
https://www.facebook.com/Anviraedu
https://www.instagram.com/anvira_edu/

